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A FINITE ELEMENT MODEL FOR THE
TIME-DEPENDENT JOULE HEATING PROBLEM

CHARLES M. ELLIOTT AND STIG LARSSON

ABSTRACT. We study a spatially semidiscrete and a completely discrete finite
element model for a nonlinear system consisting of an elliptic and a parabolic
partial differential equation describing the electric heating of a conducting body.
We prove error bounds of optimal order under minimal regularity assumptions
when the number of spatial variables d < 3. We establish the existence of
solutions with the required regularity over arbitrarily long intervals of time
when d < 2.

1. INTRODUCTION

In this note we consider the numerical approximation by the finite element
method of the following nonlinear elliptic-parabolic system
(1 1) ut _Au =O'(u)|v¢|2,

o -V (o(u)Vg)=0,
where ¥ = u(x,t), ¢ = ¢(x,t), u, = du/dt, V denotes the gradient with
respect to the x-variables and A = V - V is the Laplacian. These differential
equations are studied for ¢ in a finite interval [0, T'] and for x in a bounded
convex polygonal domain Q in R?, d = 1,2 or 3, together with initial and
boundary conditions

' u(x, 0) = up(x), x € Q.

xeQ, te[0,T],

We make the assumption that the function ¢ € C2?(R) and that, for some
k,K>0andall seR, '

(1.3) O<x<o(s)<K, la’(s)] + |a”(s)| < K.

This system models the electric heating of a conducting body [5] with © being
the temperature, ¢ the electric potential, and ¢ the temperature-dependent
electric conductivity.

Let (-, ) and | - | denote.the inner product and norm in L, = L(Q),
and H! = HY(Q) = {u € L, : |Vu| € Ly}, H} = {u € H' : u|pq = 0}
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be the standard Sobolev spaces. The finite element method is based on the
weak formulation of the above initial boundary value problem, where we seek
u(t) € H}, ¢(t) € H' with ¢(t) — g(t) € H} such that

(1.4) (u, x)+ (Vu, V) =(0w)|Ve*, x),  VxeH], tel0,T],
. u(0)=u0a
and

(1.5) (6(w)V$, Vx)=0, VyeH!, tel0, Tl

Let {Sy}s>0 be a family of approximating subspaces of H!, where each
space S, consists of continuous piecewise linear polynomials with respect to a
triangulation of Q with maximum meshwidth 4. With each S, we associate
the subspace S, = {uy € Sy : uplog = 0}. We assume that the family of tri-
angulations is such that the standard interpolation error estimates [4, Theorem
3.2.1] and inverse estimates [4, Theorem 3.2.6] hold.

We first consider a semidiscrete approximation: find wu,(t) € $;, ¢(t) € Sy
with ¢, (t) — m,g(t) € $) such that

(e e 0+ (Vi V) = @@)IVE, 1), Yz €Sy, 1€(0, T1,
up(0) = upo,

and

(1.7) (0(up)Veon, Vx) =0, vxesS,, tel0, T],

where 7, : C(Q) — S, denotes the standard Lagrangian interpolation operator
and wu,, € S, is an appropriate approximation of u#y. For this method we
prove an error estimate of the form

llun(t) = u(@ll + llgn(?) = d(O)I| < C(u, ¢, T)K*,  t€[0, T,

(see Theorem 3.1 below) under a certain assumption about the regularity of
the exact solutions # and ¢. This assumption is essentially the same as in
the standard error analysis for the corresponding linear elliptic and parabolic
problems. The main difficulty here concerns the treatment of the gradient-
dependent nonlinearity: one has to deal with the expression

a(u)Voil* — a(W)|V|* = o (up) V(s + ) - V(b — ) + (0 (un) — 9 ()| VI,

where V(¢, — ¢) is formally only O(h), and where V¢ and V¢, enter in a
nonlinear way. These difficulties are handled by means of a duality argument
and by taking advantage of parabolic smoothing. In particular, we avoid using
a maximum norm bound for V¢, , which would be difficult to obtain.

We also consider a completely discrete scheme based on the backward Euler
method with semi-implicit linearization: find U, € S’;, , &, € S, with &, —
n,8(ty) € S, such that

(OnUn, x)+(VU,, Vy) = (U(Un_1)|VCD,,_1|2, X)»
(1'8) ‘ VXGSh, tn€(09 T]9
Uo = tpo »

(1.9) (0(Un)V®,, VY) =0, VxeS$,, t,€[0, 7).
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Here 0,U, = (U,—U,_1)/k, t,=nk,n=0,1,2,...,and k isthe timestep.
For this scheme we show in Theorem 3.3 that

1Un — u(ta)ll + 1@n — $(ta)l| < C(u, ¢, TY(h* +k),  tn €0, T1,

again under the same regularity requirement as for linear problems.

We begin the error analysis in §2 by recalling some results about linear elliptic
and parabolic finite element problems. The nonlinear error analysis is carried
out in §3, where it is assumed that the number of spatial variables d < 3,
and that the exact solutions have minimal regularity. Finally, in §4 we prove
the global existence of solutions with the required regularity when d < 2.
Our argument here builds upon the techniques of Cimatti [5], who showed the
existence of weak solutions. We are not aware of any existence and regularity
result in the three-dimensional case.

There is a vast literature on finite element methods for nonlinear elliptic and
parabolic problems. For example, we mention the work [6, 7] on the porous
media equations, which are similar to the Joule heating problem. Roughly
speaking, the porous media equations are (1.1) with the term o(u)|V¢|> re-
placed by V¢ -Vu, where u is a concentration, ¢ is the pressure, and V¢ is
the velocity. In [6, 7] the equation for ¢ is solved by a mixed method where
both ¢ and V¢ are approximated to order O(h2), so that some difficulties
that we address here are partly avoided there.

After the present work was finished we became aware of the paper [18], which
addresses the same problem as we do, but obtains nonoptimal results.

Throughout this work we use the notation [[ullm,p = (X 4<m ||D°’u||‘£p)1/p
for the norm in the standard Sobolev space W," = W;"(Q) ‘with the usual
modification for p = oo, and with the exception that || - || and (-, :) denote
the norm and inner product in L,. We also write H” = W)” when p =2.

2. LINEAR ERROR ANALYSIS

In this section we collect some facts about linear elliptic and parabolic finite
element problems that we will need in the sequel. Since 8Q is a convex polygon,
it is well known [9] that the Laplacian A is an isomorphism from H?>NH/} onto
L,, and we let A~! denote its inverse. Let R, : H} — S, be defined by the
equation

(2.1) (VRyu,Vy)=(Vu,Vy), VNueH}, x€S,.

From the standard error analysis [4, Theorems 3.2.2, 3.2.5] for linear elliptic
finite element problems we quote the error estimates

(22) Ry = Dull +hll(Ry = Dully,2 < Ch*|lull2,2,  Yue H*N Hy.
We denote by A, : S, — S), the discrete Laplacian defined by
(—Mwx>m) =(Vx,Vn),  Vx,n€S,

and we let E,(t) = exp(¢A,) be the analytic semigroup generated by A, and
P, : L, — S}, the orthogonal projector. It is well known that Ej(t)P, satisfies
the following bounds:

(2.3) IEx() Pyl + ' PIENO Paylli,2 + A ER() Pawll < Cliwll,  ¢>0,
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for v € L,, where C is independent of & and ¢, reflecting the uniform
analyticity of the evolution operator. In a similar way, for the discrete evolution
operator E, = (I — kA,)™" associated with the backward Euler method, we
have

(24)  NELPwl + 6P IERPow L 2 + Wl MELPaw ] < Cllwll,  ta> 0.

We may now state and prove error bounds for linear parabolic finite element
problems. Such results are common in the literature, but a particular feature
of the error bounds presented here is that the regularity requirement is optimal
and expressed in a form that is suitable for our regularity analysis in §4. Similar
results are proved in Chapter 2 of [17] for spatially semidiscrete approximations
of the linear homogeneous problem, but are not readily available for the non-
homogeneous problem and completely discrete schemes. Moreover, our proof
technique is different from that of [17]; being based on (2.3) and (2.4), this
technique will also be used in our nonlinear error analysis below.

Theorem 2.1. (a) Suppose that u(t) € H} is the solution of the linear heat equa-
" tion

(2.5) (ue, X)+ (Vu, V) =(f(t), x), VxeH;, t>0,

u(0) = uo,
and that u,(t) € S, satisfies
(uh,t’X)+(VuhaVX)=(f(t)aX)9 VXGSh’ t>0,
up(0) = po.
Then, for t > 0, we have

(26)  llun(t) = u(®)ll < Cllwno — oll + Ch? sup (l1u(s)l2,2 + sllue(s)lz,2) »
0<s<t

provided that the solution u_has the regularity implied by the norms on the

right-hand side. (b) If U, € S}, satisfies

(anUn’X)'f'(VUn,VX)=(f(tn),X), VXESh’ tn>0a

2.7)
Uo = upo,

then, for t, > 0, we have
|Un — u(tn)|l < Cllttpo — wol|

2
(2.8) +Ch Oﬁggtn(llu(s)llz,z + lue(s)ll + sl )

+Ck sup (1A~ u(s)] + slluas)]).
0<s<ty

Proof. We prove (2.8) only; (2.6) can be proved in a similar way; indeed, it
essentially follows from (2.8) as kK — 0. See also [17, Lemma 4 of Chapter 2]
for a different proof of (2.6). Let for simplicity

F)= sup ([u(®)l2,2 + o)l +slu(s)l2,2)

G(u) = sup (A uu(s)| +slua(s)]).

<s<tn
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We write
en = Un - u(tn) = (Un - Rhu(tn)) + (Rhu(tn) - u(tn)) = On + pn s

and the required estimate for p, follows from (2.2):

(2.9) 1oall < CHllu(ta)ll2,2 < CH?F (u).
Moreover, we have

(2.10) I8npnll < Rt F(u),  ta >0,
because

19npull < 6L, max (dluedll2,2) < CH;' F (),

for th 21, and
o) < Cth—l t < Cth——l F(u).
“ 1/71“ = 01<nta<xk ”u( )”2,2 = 1 ( )

The remaining term 6, belongs to S, and using (2.7), (2.5) and (2.1), we
find that it satisfies the equation

8,0 — AyOn = P, (—a,,p,, + w,,) :

where w, = u,(t,) — 8,u(t,) . Hence, by Duhamel’s principle,
n
0, = E,Q',,Go +k ZE,?}:J-HP;, (——ajpj + Cl)j).
j=1

Let [n/2] be the integer part of n/2. Summation by parts gives

(/2] [n/2]
—k " Ef T Pidipj = EfyPupo — Egy " Pupn + k Y (0,5 ) Pups
j=1 : j=1
where 9;E;, 7 = —AE} so that
) (/2] »
0 = EfyPreo — Egy " Pupiam — kY AEpy 7 Pap;
j=1
n ) [n/2] )
-k Z E,’c’h“’“Pha,-pj+k ZA},E,?;]+I(A;1P;, —P;,A‘l)w,-
j=ln/21+1 j=1
[r/2] . n . 7
+kZAhE;:h_j+1PhA_le+k Z EZ;1+1P;,60]‘ EZR,'.
j=1" J=ln/21+1 i=1

We proceed to estimate the seven terms on the right-hand side. Using the
smoothing property (2.4), the error bounds (2.9) and (2.10), we have

4 [n/2] n
YRl <cC (Ileoll + Ilp[n/zlll) +Ck Yt lpill+Chk > (9l
i=1 j=1 J=[n/2]+1
[n/2] n
< Clleo|l + Ch2F(u)<1 +kY ol +k Y z;')
j=1 j=[n/2]+1

< Clleoll + Ch2F (u).
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For the fifth term we use the fact that A;‘Ph —A~!' = (R, = I)A~!, so that by
(2.2) and elliptic regularity

(A" P = A Heojll = Ry = DA™ ;]| < CHIA™ @jll2,2 < Ch?|||
< Ch? max IIut(t)II < Ch2F( u).

t 1<
Hence,
[n/2]
IRsl| < CR2F(u)k ) t71. | < Ch*F(u).
Jj=1

For the sixth term we note that

||A_la)jl|=”k_ (t—t, DA uy(t) dt” <k¢ max A= un(0)|| < kG(u),
. Li-1 j—
so that
(/2]
IRell < CkGw)k Y 171, < CkG().
j=1

Finally, we have
lwjll < Ckt;'G(w),  t;>0,

because

tj
_llp- -1
ol = =t [ (= ti-puate)de < ke, max (dluatol) < Chty 6w,

ti—y

for tiz b, and

leor]] = e /0 * taat) dt|| < max (tlun())l) < G = ki G(w).

Hence,

IR/l < Ck E lw;|l < CkG(u)k Z 17! < CkG(u).
J=[n/21+1 J= [n/2]+1

Taken together, these estimates prove (2.8). O

3. NONLINEAR ERROR ANALYSIS

3.1. The semidiscrete case. Let u;, ¢, be the semidiscrete finite element
approximations of the solutions u, ¢ of the nonlinear problem (1.1). In this
section we estimate the errors u(t) — u,(¢) and ¢(¢) — ¢,(t) uniformly over a
finite time interval 0 < ¢t < T under minimal assumptions about the regularity
of u and ¢. The error analysis is carried out under the assumption that the
number of spatial variables d < 3; the regularity assumptions, however, have
only been verified for d < 2, see §4 below. The result is presented in the
following theorem.
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Theorem 3.1. Let u, ¢ and uy, ¢, be solutions of (1.4)~(1.5) and (1.6)-(1.7),
respectively, with u,, chosen so that

(3.1) lluo — unoll < Myh2.
Assume further that d < 3 and that
(32) sup (lu()ll2, + tlus(t)ll2,2) < Mo,
0<t<T

(33) sup (Ilg(Dllzma + 19()ll2,2 + 16(E)l1,00 ) < Ms,

0<t<T .
for some positive numbers T and M;, i=1,...,3. Then there is a constant
C=C(x,K, M, My, M5, T) such that
(3.4) llu(t) — wn (Il + l6() — Su (Ol < Ch*,  t€]0, T].

Here, || -|lg2(q) is defined by summation over the flat parts of the polygon
0Q . In the remainder of this section we let C denote various quantities that
may depend on the data of our problem as in the statement of Theorem 3.1.
All estimates that are derived hold uniformly with respect to ¢ € [0, T]. We
prepare for the proof of Theorem 3.1 by proving some preliminary bounds for

B() — dn(2) -
Lemma 3.2. Under the assumptions of Theorem 3.1 we have

(3.5) IV(8(6) = )l < € (I + l1u(e) — un D)1,

(3.6)  llg(r) — dn(Dll < C(h2 + () — un(@)ll + B~ /S| u(t) — uh(t)”2)-

Proof. Since all results below are uniform in ¢, we do not make the ¢-depen-
dence explicit. Let e, = ¢ — ¢, . It follows from (1.5) and (1.7) that

(37)  (own)Vey, Vi) = (0(wy) — o)V, Vx), VX €S,

and

(38)  (0(W)Vey, Vi) = ([0(ws) - 0@)]IVs, VX), VX €S

Since 7,$ — ¢, € Sy, we have from (3.7) that k

(o(un)Vey, Vey) = (a(un)Vey, V(¢ — 1)) + (0 (un)Vey , V(mnd - b))
= (0(un)Vey, V(¢ — mpg))
+ ([o(up) — a(W)IV, V(7hd — dn)).
It now follows from (1.3) and (3.3) that
Vel < C(IVesll IV (@ = mad)ll + llun = ull il ol V(&1 = mrd)]])

< C(IVegll V(6 = mud)ll + lluy — wll (IV (& — m)ll + Vel
< C(IV(@ - mrd)I1* + llun — ul?) + 41V eyl

Hence,
IVegll < C(IV(6 = mag)ll + llws — ul)
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which immediately yields (3.5) in view of an interpolation error estimate and
(3.3).

The L, estimate of e, is obtained by the standard duality argument. Let y
be the unique solution of the Dirichlet problem

(3.9 =V (o(u)Vy) =e4 in Q; w=0o0n 8Q.

Then the standard regularity estimate yields (recall that Q is a convex polygon)

wll2.2 < CllAy]| = c“ “)V“ VW teo),

Using (1.3), Holder’s inequality, an interpolatlon 1nequa11ty (see (4.2) below),
the trivial estimate ||y||;,2 < Clley||, and ||ul|,,2» < M, from (3.2), we obtain

Wll2,2 < C(I1Vallo,s VW llo, 3 + llegll)
1-d/6 d/é
< C (Il 2 1w I3 1w 1375 + llegl )
1/(1-d/6
< c(luly/§~ Mol + lesl) + 41w lz,2

< Cllegll + 3w ll2,2-
Hence,
(3.10) lwli2,2 < Cllegll-

From (3.9) and Green’s formula it follows that

legll> = —(V - (a(u)Vy), e;)
= (a(u)Vy, Vey) — (a(u)Vy - v, ey)

(3.11) = (a(W)V(¥ — wi), Veg) + (a(u)Vyy, Vey)
—(o(W)Vy v, g—m8)
=Th+1+ T3,

where y, = m,w € S, and where we have used (-,:) to denote the inner
product in L,(8Q), and v is the unit outward normal vector on 9Q.

The first term on the right of (3.11) is easily estimated by means of an inter-
polation error bound, (3.5) and (3.10):

1711 < CIV (W = vl IVegll < Chllylla,2 € (h + llu - uy])
< C(H + llu = unll) legl-
Using (3.8), we have

= (a(u)Vey, V) = ([o(up) — a(u)IVop, V)
= ([o(up) — W)V, V) + ([o(up) — a(W)IV(dy — @), V)
+ ([o(up) — a(W)IV(on — @), V(wn — ¥)).

Hence,

121 < Cliu = wnll (16111, oollWall 2 + Vegllo 31wl 6) + CUVeall 19w = W)l
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Using the facts that [|¢[|i,c0 < M3, [lyalli,2+ W16 < Cllwll2,2 < Clley|| and

IV(wn — W)l < Chllyll2,2 < Chlley|l , we obtain

T3l < C(Ilu = unll (1 + I Vegllo,3) +hIIVeyl ) legl.

By interpolation error estimates, an inverse estimate, (3.3) and (3.5) we have
here

IVegllo,3s < IV(é = mhd)llo,3 + IV (7hd — dn)llo, 3
< Ch'=8)|¢|ly.2 + Ch=45||V (rp — )|

< Ch9ill2 2 + Ch=% (Chligll2,2 + Vel )
<C(1+hlu—uy),
so that
ITal < C (R + 1l = upll + =95 — uy) gl
Finally, we have

T3] < Cllg — magli,oollvll2,2 < ChlIgllmpa)llesll < Ch*lleg|l,

where a trace inequality, an interpolation error estimate and (3.10) have been
used. Together, the above estimates prove (3.6). O

Proof of Theorem 3.1. It is convenient to split the error into two parts: u, —u =

(uy, — ty) + (i, — u) ; where @, : [0, T] — S}, is uniquely defined by

(3 12) (ah,t’X)"-(VahsVX)=(F(us¢)9X)’. VXGSha IG[O, T]a
un(0) = uno,

with F(u, ) = o(u)|V¢|*>. Applying the known error analysis for linear

parabolic equations, we obtain

(3.13) llia () — u(t)ll < Ch?,

where C depends on M; and AM,, see Theorem 2.1.
Forming the difference between (1.6) and (3.12), we have for { = u;, — i,
that

=Ml = Pu(Fun, $0) = F(u, 9)), 1€[0,T];  {(0)=0.

Hence, the variation of constants formula implies that

(3.14) Lol < /O’UEha—s)Ph(F(uh(s),¢h<s>>—F<u<s>’¢<S>>)||ds-

We proceed to estimate ||{(¢)|| by bounding the right side in various ways. In
doing so, we shall need several bounds for the operator E,(¢)P, . In addition to
(2.3) we quote from [11, Lemma 5.2] a bound of the norm of Ej(¢)P, consid-
ered as an operator from L, into L., , namely, for any € > 0 thereis C. >0
such that

(3.15) IEx()Pawllo, 00 < Cet™*~<|lyll, >0,



1442 C. M. ELLIOTT AND STIG LARSSON

By duality we also have the same bound for the norm of E,(¢)P, : Ly — L,,
that is,

(3.16) IEx()Pawll < Cet= =<1y llo, 1, t>0, €e>0.

In fact,

(3.17) "Eh(t)Ph'//“ = sup |(Eh(t)PhV’, X)i = sup |(!//, Eh(t)PhX)l
X€EL; "X” XEL, “X" ’

since Ej(t)P, is selfadjoint, so that (3.16) follows from (3.15).
We begin by deriving a preliminary low-order estimate of ||{(¢)||. We have

|1F(up, dn) — F(u, d)llo,1
< [lo(un)V(dn + @) - V(s — Bllo, 1 + (0 (un) — a(w)[VE|llo, 1
G18) < c(Ivgull + 1961) 19(6h = Il + Cllus - ull 1917, oo
< C(h+llun—ull),

where we have used the easily proved fact that ||V, (?)| + ||[Vé(?)|| < C, the
assumption ||¢(?){l1,c < M3, and the error bound (3.5). Hence, by (3.14),
(3.16) and (3.13) we have

llun () = u(@)ll < llan(2) — u(@)ll + 1E@]
<Ch + C/O (t = 8)"*I1F (un(s) » Pn(s)) — F(u(s), ¢(s))llo,1ds

<O +C [[(t=97 (h+ lunts) - wo)) ds

<Ch+ c/ot(z — $)=®llun(s) — u(s)| ds,

where it is possible to choose a € (3/4, 1), since d < 3. Hence, a variant of
Gronwall’s lemma (see, e.g., [14, Lemma 5.6.7], [10, Lemma 7.1.1] or Lemma
3.4 below) yields the preliminary bound

llun(2) = u(®)|| < Ch.
Inserted into (3.5) and (3.6), this gives
lén(t) — $(Dll1,2 < Ch,
I64(t) — (D)l < € (2 + () — u@)])-

The reason for the suboptimality of the preliminary bound is that we esti-
mated F(u;, ¢p) — F(u, ¢) in terms of V(¢;, — ¢), which is only O(h). In
order to obtain an estimate of second order, we shall use a duality argument
to remove the gradient from the latter term. This argument requires a more
accurate expansion of F(uy, ¢,) — F(u, ¢), namely

F(up, ¢n) — F(u, ¢) = [o(up) — a(w)]|VY|*
+20(u)Ve-V(dy — ¢)
(3.20) +2[o(un) — o)V - V(e — ¢)
+ 0 (up)|V(¢n — )
=R+ Ry + Ry + Ry.

(3.19)
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Using (2.3) and (3.16), we shall estimate each of the terms || Ej(z — s)P,R;(s)]|
and substitute the result into the right-hand side of (3.14).

Omitting the dependence on ¢ —s and s in intermediate steps, we obtain
for the first term

IEA(t — $)PuRy(5)|| = |ExPa ([0 (un) — a(@)]IVS)I| < Cllun — ]l 1191}, o
< Cllup(s) — u(s)|l-
For the second term we use a duality argument (cf. (3.17)): for y € L, we have
(En(t = $)PaRa(s), X) = 2(V(¢n — ¢), 9(u)VOELP4X)
==2(¢n— ¢, V-[0(u)VOE, Pyx])
= —2(¢h - ¢ > a(u)V¢ ° V[EhPhX]) ’
since V - (a(u)V¢) = 0. Hence, by (2.3),
|(En(t — $)PyRa(s), )| < 2lpn — Bl 18ll1, 00 IERPrxll1,2
< C(t=5)""lgnls) — s lxll»
so that, in view of the second estimate in (3.19),
IEA(t = )PaRo()| < C(t = )72 (1 + jun(s) - u(s)] )
By (3.16) there is a € (3/4, 1) such that
IEx(t = $)PaR3(s)|| < C(t = 5)7*||[0 (1) — 0 (u)IV - V(h — P)llo,1
< C(t =) Nun = ull 16111, o0 (V41 + 19611)
< C(t—5)7%un(s) — u(s)|l-
Similarly, by the first estimate in (3.19),
IEn(t = )P Ra(s)Il < C(t = $)*[lo(un)I V(s ~ #)llo, 1
< C(t=5)""llgn(s) — d($)IIF 2 < C(2 —5)*h.
Combining these bounds with (3.14) and (3.13), we obtain

t
(321)  |lu(t) - u(r)l| < Ch*+C /O (¢ = 5)7(h2 + llun(s) — w(s)I) ds.

Gronwall’s lemma now yields the desired bound for ||u,(¢) —u(¢)|| in (3.4), and
hence, in view of (3.19), also the bound for ||@,(z) — ¢(¢)||. O

3.2. The completely discrete case. We now turn to the completely discrete

scheme. Our result is the following.

Theorem 3.3. Let u, ¢ and U,, ®, be solutions of (1.4)—(1.5) and (1.8)-(1.9),
respectively, with' u,, chosen so that

lluo — unoll < MyA2.
Assume further that d < 3 and that

sup (Ilu(t)llz,z + (O + AT ua (O] + tllue(D)]l2,2 + tllun(t)ll) <M,
0<t<T

sup (||g(t)||H2(aQ) + le()2,2 + 16D, 00 + ||¢,(t)||1,2) <M,
0<t<T
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and that k < M4h4/¢ for some positive numbers T and M;, i =1,...,4.
Then thereis C=C(x, K, My, My, M3, My, T) such that

lu(tn) = Unll + [|(ta) — @ull < C(R2+ k), 1, €10, TI.

We will need a discrete version of the generalized Gronwall lemma that we
referred to in the previous proof. We formulate this in the following lemma,
where we use the convention that a sum is considered to be empty if its upper
limit is smaller than its lower limit, thatis, 2, @, =0 if m<n.

Lemma 3.4. Assume that the sequence ¢, satisfies

0<gp.<A +Bkzt-‘+ﬂ¢, for t, €10, T1,
=0
where A, B, T are positive numbers and 0 < B < 1. Then there is a constant
C=C(B,B,T) such that 9, < CA for t, €[0, T].
Proof. Tterating the given inequality once, using the inequalities

tn
th‘”ﬂ < / (tn — )P ds = Cyt?,

k Z t—1+ﬂ 1+y <C (t —8)" 1+ﬂ(s ) 47 g = Cﬂ ) ;_l;rﬂw’
I=j+1

valid for 0 < 8, y < 1, we obtain

On 5A+ABth“+" +sz2(k Z t“”'gt_l“g)(oj

1=0 j=0 I=j+1

<Ci(B,B,T)A+Cy(B,B th“”ﬂ
1=0
After N —1 iterations, where N is the smallest integer such that —1+Nf >0,
we have
n—N
9a < Ci(B, B, T)A+Co(B, Bk Y 1,11V g
1=0
n—N
S Cl(ﬂ’B’ T)A+C2(ﬂaBa T)kz¢1,
1=0

and the desired conclusion follows by the standard Gronwall lemma. O

Proof of Theorem 3.3. The proof is a generalization of the proof of Theorem 3.1.
We begm by sphttmg the error into two parts: U, —up = (Up — Up) + (Un — tn) ,
where U, € S, is uniquely defined by

(322) (?"U"’ X) +(VUn, VX) = (F(un, ¢n)a X)’ VX GSh, tn € [0, T],

Uo = Uy,
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with u, = u(ty), ¢n = ¢(tn) and F(un, ¢n) = 0(un)|Vha|*. Applying the
known error analysis for linear parabolic equations, we obtain

(3.23) 10, — unll < C(h* + k),
where C depends on M; and M, , see Theorem 2.1.

Forming the difference between (1.8) and (3.22) and applying the variation
of constants formula, we have for {, = U, — U, that

620 ol <kY

1=0

E'!P, ((F Uy, ®) - F(uy, ¢1+1)) ”

In addition to (2.4), the discrete evolution operator E}, P, satisfies the bound

(3.25) IEfPwll < Cetn*llwllo,1,  ta>0, €>0.

The proof of this is analogous to that of (3.16). Indeed, by inspection of the
proof of [11, Lemma 5.2] it is clear that a completely discrete analog of (3.15)
holds and hence (3.25) follows by duality.

Lemma 3.2 is directly applicable to the equation for ®, and gives
IV (@, = ¢l < C(A+1Un = ),

(3.26)
1©n = gall < C(H + 1 Un = wnll + =45 Uy — un ).

Hence,
(327)  NF(Up—t, ®aet) = Flttn-1, $n-)llo,1 < C(h+1Up-1 = tn-ill)

cf. (3.18). In a similar way we have

”F(un—l ) d)n—l) - F(un ) ‘»bn)”O,l
<o (Un-1)V(pn-1+ én) - .V(‘»bn—l = &n)llo,1
+[1(0(tn=1) — 3 (n)) |V énl*ll0, 1

< C(IVn-1ll + I9¢nl )1 = @nls.2

(3.28) ;
+ Cllun—1 — un|| ”¢n"1,oo
< C(Ign-1 = bulli, 2 + lltn—1 = )
< Ck sup (IIg(Oll1,2 + lw(®)l) < Ck.
0<t<T
Therefore,

”F(Un—l > q)n—l) - F(un ) ¢n)”0,l < C(h + k + ”Un—l'_ un—l”) 5
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so that, by (3.24), (3.23) and (3.25),
|Un = tnll < 100 = tnll + 1l

n—1
< C(h + k) + Ck 3 7% F (Uy, @) = Fupsr, d0)llon
=0
n—1
< Ch*+k)+ Cth;f,(h +k+|U - u1||)
=0
n—1
<SCh+k)+Ck>_ 6;%U —ul,
=0
where we have chosen « € (3/4, 1). Hence, Lemma 3.4 yields the preliminary
bound
1Un —unll < C(h + k),
which, in view of (3.26), leads to
”q)n - ¢n“1,2 < C(h + k) s
19n = @ll < C(h+ ke + 1 Un = tnll)

where we have also used the assumption that kh~9/6 < M, . In order to com-
plete the proof, we repeat the steps leading to (3.21) using (3.28) and replacing
(3.27) by a more accurate expansion as in (3.20). This gives
n—1
[Un — unll < C(h* + k) + Ck Y 6,211U — w|,

1=0

so that ||U, — u,|| < C(h? + k) follows by the Gronwall argument of Lemma
3.4, and hence, in view of (3.29), we also obtain |®, — ¢,|| < C(h2+k). O

(3.29)

4. EXISTENCE AND REGULARITY

In this section we study the solvability of the system (1.1)-(1.2). The exis-
tence of global weak solutions in two space dimensions (Q C R?) was shown
by Cimatti [5], see also Rodrigues [15] and Allegretto and Xie [2] for exis-
tence results for related problems. The regularity of these solutions, however, is
insufficient for the purpose of proving error bounds of optimal order, cf. Theo-
rems 3.1 and 3.3. Building upon the techniques of [5], we obtain global strong
solutions with the required regularity in one and two space dimensions. The
three-dimensional case remains an open problem.

Theorem 4.1. Assume that Q C R?, d < 2, is a bounded domain whose bound-
ary is either smooth or a convex polygon. Let T > 0, r > 2 and assume
that Uy € H2 nH(}’ 8 € Loo([oa T]a VV,.Z), & € Loo([o, T]: HZ) and 8u €
Lo([0, T], H'). Then (1.1)=(1.2) has a unique solution u € C'([0, T], L) N
C([0, T, H?), ¢ € Loo([0, T], H?). Moreover, there is a constant C, depend-
ingon T,r,uy, g, Q and on a through the constants x , K in (1.3), such that
for t € [0, T] we have

lu(@ll2,2 + O + A" s (O] + tllue(2)ll2, 2 + Ll (D)
+lle@ll2,2 + leD, 00 + lP:(@)1,2 < C.
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In order to prepare the way for the proof, we recall some facts that we shall
need. The assumption about Q guarantees that for any p € [2, co) thereis C
such that

(4.1) lull2,p < CllAulo,,,  VueWZNH,

see [9]. Under even weaker assumptions about Q ¢ R? we have the following
interpolation result [1]: let 1 < p < oo, m > 1 and assume that u € W,"
Then there is a constant C = C(m, p, q, d, Q) such that the inequality

d 1
1-6 0 =
(42) o, < Cllulg Nl . where 0= (o~ ),

holds for g € [p, oo] if m—d/p >0, for g € [p, ) if m—d/p =0, and for
ge€lp,—-d/(m—-d/p)] if m—d/p <0. Note that 0 < 6 < 1. We shall also
use a theorem of Meyers [13], which we quote here in a special case suitable
for our purpose. We use the standard notation W! = {u € W : u|sq = 0} and
W;I‘l is the dual space of Vi{}, , where ¢ and ¢’ are conjugate exponents.

Theorem 4.2 (Meyers [13]). Assume that Q C R? has the property that, for
some q € (2,0) and L > 1, the Laplacian A is an isomorphism from W;
onto W' with ||A='|| < L, and let the function a satisfy the inequalities
0< Kk <a(x) <K forall x € Q. Then there are p € (2,q) and C > 0
depending only on q, k , K, L such that the following holds true: Let f € (L,)?
be a vector field and let u € H} be the unique solution of

(@Vu,Vy)=(f,Vx), Vxe€H.
Then u€ W} and |[Vullo,, < Cllfllo.p

The assumption in Meyers’ theorem is satisfied, for example, if Q c R? is
bounded and 9Q is either smooth [12] or a polygon [8]. See also [3] for a
modern presentation of Meyers’ theorem, and [16] for a finite element version.

Proof of Theorem 4.1. Let V,, be the eigenspace corresponding to the m small-
est eigenvalues of the operator —A with domain of definition H? N Hj. We
consider the initial value problem

U(t) G Vm,
(4.3) (Ui, 1)+ (VU, Vx) = (a(U)[VD]*, x), VX EVm, t>0,
(U(O)a X)z(an X)’ VXEVma

where ®(t) is determined by the linear elliptic boundary value problem
(1) e H', ®(2) - g(1) € Hy,
(a(U)VD,Vy)=0, Vx € H}, t>0.

Clearly, given U(¢) and g(¢), there is a unique solution ®(z) of (4.4). It
follows that (4.3) is an initial value problem for a finite-dimensional system of
ordinary differential equations for the Fourier coefficients of U . Hence, there
exists a unique solution to (4.3) on a time interval [0, T,,], where T,, depends
on uy and m. We proceed to derive a priori bounds, which show that (4.3)
has a solution on the prescribed time interval [0, T]. These estimates will also
allow the passage to the limit in U and ® as m — oo, yielding the existence

(4.4)
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of a solution u, ¢ to (1.1)-(1.2) with the desired regularity. This passage to
the limit is rather standard and we omit the details (cf. [5]).

Throughout this proof we let C denote various quantities that may depend
on the data T',r, up, g, Q and on ¢ through the constants x, K in (1.3),
but not on m and ¢. All estimates that we derive below hold uniformly with
respect to ¢t € [0, T7].

Step 1. We begin by showing some preliminary estimates of @®. The starting
point is the maximum principle, which yields

(4.5) 12(®)lo,00 < l&(Dll0,00 < C.

Next we apply Meyers’ Theorem 4.2 to equation (4.4), which implies that there
is p > 2 such that ||V®||o , < C||Vgllo,, . The constant C depends only on
Q and o through the bounds in (1.3). The optimal value of p is unknown;
for simplicity we assume that 2 < p < r. Together with (4.5), this shows that

(4.6) 12O, < C.

Further estimates of ® depend on derivatives of a(U), and we shall take this
carefully into account.

First we note that equation (4.4) implies —a(U)A® — Va(U) - VO = 0, so
that, by Holder’s inequality,

a'(U)
a(U)

for any g, q' satisfying 1/q + 1/q’ = 1/p. Applying the regularity estimate
(4.1) to the function ® — g € H}, we thus obtain

1®l2,5 < C(IADlo, + lIgll2,5) < C(1+9Ullo,¢IVPlo,).
Hence, using also the interpolation inequality (4.2) and (4.6), we have
19l < (1 + 1012 205, I9137)
< C(1+11Ulz.2l®l157)
< C(1+1U15/5) + 31915,

1@, = | 753 VU - V@[ < CIVUIlo. o 19®lo.q,

where a =1 —-d/p+d/q =1-d/q . In the last step we also used Young’s
inequality

(4.7 ab <e'=10g1/6 4 epl/1=0) = €50, 0<O<1, a,b>0.

For the above estimate of |VU]||o,, to hold, it is required that ¢’ < oo, which
in its turn is equivalent to o < 1. We have thus proved the preliminary estimate

(48) @0, <C(1+IUWI),  foraell-d/p, 1),

where C is independent of a. We next proceed to show that there are g < 1
and C > 0 such that

(4.9) IOl 00 + R0} 4 < C(1+ T ,)-
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In fact, arguing as above using (4.6) and (4.8), we have

V@0, < ClI@IL 1PN, < C(1+1UIS),

- sP
where y = d/p < 1. By taking o sufficiently near 1, and in view of the
maximum norm estimate in (4.5), we obtain the desired sublinear estimate of
|P||1,00 In (4.9). Similarly,
‘ 2
_ 2
Ivol3 4 < (Cllel7Iel; )" < c(1+1vI5%),

where now y =d/p—d/4. Since 2y = (4/p—1)d/2 < 1, the bound for ||<I>||f’4
in (4.9) follows by taking « sufficiently near 1.

Remark. This is where the restriction to two space variables occurs: if d = 3,
then we must have ¢’ < 6 and o < 1/2, so that we can only guarantee that
B <3 in (4.9).

Step 2. We now estimate ||Ul||,,» and ||U|. We begin by noting that it
suffices to estimate ||U;||. Indeed, equation (4.3) implies that U, — AU =

P, (a(U )|Vd>|2) , where P, denotes the orthogonal projection onto V,,. Hence,
using the regularity estimate (4.1), (4.9) and (4.7), we obtain

1Ull2,2 < CIIAU| < C (Ul + (V) VO )
< (U + 1013 4) < C(1+ UM+ U1 ;)
<C(1+1Ul) + 41U,
since f < 1. This shows that
(4.10) 1U@)l2,2 < C(1+1U).
Taking y = U, in (4.3), we obtain
TP + L4 IVUI2 = (a(U)IVOR, Uy < C @I} 4| U
<C(1+1UIA) Ui < € + 41U,
since f < 1, where we have employed (4.9), (4.10) and (4.7). Integration with
respect to ¢ then yields
@iy [P+ IVUQ < CIV P+ Cr< .

since U(0) = P,ug, where P, is bounded independently of m with respect
to the norm ||V - ||.

In order to obtain further estimates of U,, we differentiate equations (4.3)
and (4.4) with respect to ¢. Beginning with (4.4), we have

(4.12) (6(U)V®;, Vx) = —(a(U),V®, VX),  Vxe€H.
Straightforward estimates based on taking y = ®, — g, give

1@dl1,2 < C(llgdls,2 + o' () UV]) < C(1+ Ul 1@l o0 )5
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so that in view of (4.9) and (4.10)
(4.13) IOl ,2 < € (1 +1TOIR).

Next we note that the source term in (4.3) may be transformed as follows, by
Green’s formula and equation (4.4):

(a(U)|VD?, x) = —(a(U)DPVD, Vy), VY € V.
Differentiating equation (4.3) with respect to ¢, we thus have
(4.14) (Uus x) +(VU;, Vx) = —((e(U)PVD),, V), VY € V.
With y = U, this leads to
(4.15) LNU + IVUP < [I(a(U)@VD),||2.

Here we have
i(e(U)@vVe),|| < o' (U) UV + ||o(U)D,VD| + [|o(U)DPVD,||

< C(IIUzII [@llo, ol Pll1, 00 + 1Pello, 4l Pll1, 5 + [[Pllo, ol Pels ,z),

where 1/q + 1/p = 1/2. Using Sobolev’s inequality ||®;|lo,4 < C||P:||1,2 and
known bounds for ® and ®, in (4.5), (4.9), (4.13) and (4.10), we arrive at

Ie@)@VD) < C(1+UE).

Using the fact that U(0) = P,ug, so that ||[U(0)]2,2 < C||AU(0)|| < CllAug| <
C, and hence by (4.9),

1UO)]l < IAU(O)]| + | Pa(a(U(O)IVR(O)P)]
< AU O)] + CIR(O)[ 4 < C(1 +[U(O)]2.2) < C,

we integrate (4.15) to get
t t .
1@ + [ IVUIRds < € +C [ [uids.
0 0

Applying Gronwall’s lemma together with (4.11), we obtain

t t
(4.16) ||U,(t)||2+/ IVU|I2 ds < Cexp (/ |V ds) < C.
0 0

Substituting this result into (4.10), (4.9), (4.13) and (4.8), we may conclude
(4.17) IU@llz,2 + U@ + 1P@)l2,2 + 1P(D]1, 00 + [Pe(D]]1,2 < C.

Step 3. It remains to bound ||A~'U,(2)||, t||U:(?)|l2,2 and t||U,(?)||. We begin
by noting that U, — AU, = P,,(a(U)|V®|?),, where, in view of (4.17),

I@@)ITOP)| < llo' (V) UIVDR| + 2]l (U)VD - V|

< C(IUIIPIE oo + @11, coll il 2) < €,
so that
(4.19) 1Ul2,2 < C(1+ 1T
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and also
AT U ()| < U + 1A~ (o (U)|VDI?)|| < C.

It now only remains to estimate ¢||U,(¢)| . In order to do so, we differentiate
equation (4.3) with respect to ¢ and substitute y = U, which after some
simple manipulations gives

1Uul® + £IVUN* < (e(U)IVRP) > < C,
where we employed (4.18) in the last step. Multiplication by ¢ and integration
now yields
t t
(420 [situPds+ VU@ <C+ [IvURds <C,
0 ' 0
in view of (4.16). In the next step we differentiate equation (4.14) with respect
to t and substitute y = U,, to obtain
(4.21) LUl + IV U|? < [(0(U)DVD), 2.
Here we have
(a(U)®VD),, = a(U), dVDP + o(U)DP,, VD
(4.22) +a(U)OVD, +20(U), P, VD
+20(U)®VD; + 20(U)P,VD,.

In order to estimate the terms on the right, we shall repeatedly use bounds from
(4.17) together with

1Ullo, o0 < CllUill2,2 < C(1+1Uall)

which follows from Sobolev’s inequality and (4.19). Thus,
lo(U)«@V®| = [|(a'(U) Uy + 6" (U)U}) OV ||
< C(IUall + 1N 1l 00 ) 191 o
<C(1+1Ul),
and
lo(U) @V + [[0(U) @Vl < Cl[Uillo, 00| @ills,2l1Pll1, 00 < C(1+ 1 Ual)-

Similarly,
lo(U)®: V| < Cl[Pillo, 0l Pell1,2 < ClIPrll0, o

Application of Meyers’ theorem to equation (4.12) shows that
Iv@dlo., < C(llo" (W)UYo, + l0(U)Vilo,)
< C(1+1Uillo,oll®ll1,p) < C(1+1Uall)

where p € (2, r] is the same as before, and since || Do, 0 < C||P;||1,, We may
conclude that

lo (V)@Y < C(1+Uall).
Finally, for the remaining two terms in (4.22) we have

lo (V)@ V|| + [lo(U)PVPs|| < ClPl1, o0l Pullr,2 < Cl[Pecll1 2.



1452

C. M. ELLIOTT AND STIG LARSSON

In order to bound ||®,||; ., we differentiate equation (4.12) with respect to ¢
to get

With

(6(U)V®y, Vi) = —(0(U)u VP +20(U),VD,, VX),  Vx€H].
X = q)” - g” this giVCS

1@alls,2 < C(lglls,2 + (1Uall + 1T Tllo, o0) 1911, 00 + 1Tillo, ccll Pl 2)

< C(1+1Uul)-

Together, these estimates show that

If we

I(e(U)OV®)] < C (1 +|Ual)-

substitute this into (4.21), multiply by #? and integrate, then we get

t t
2O+ [ HI9URds < C(1+ [ sivalrds) <,
0 0

in view of (4.20), and the proof of the a priori bounds is complete.

Step

4. Finally, in order to prove uniqueness, we let u;, ¢; and u,, ¢, be

two solutions of (1.1)-(1.2). By means of the a priori bounds |¢:][1,c < C,

i=1
;‘f;”ul

10.

11.

12.

, 2, it is straightforward to show that ||¢; — ¢2|1,2 < Cllu; — u2||, and
— uy||? < C|luy — uz||?, so that uniqueness follows. O
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