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A FINITE ELEMENT MODEL FOR THE 
TIME-DEPENDENT JOULE HEATING PROBLEM 

CHARLES M. ELLIOTT AND STIG LARSSON 

ABSTRACT. We study a spatially semidiscrete and a completely discrete finite 
element model for a nonlinear system consisting of an elliptic and a parabolic 
partial differential equation describing the electric heating of a conducting body. 
We prove error bounds of optimal order under minimal regularity assumptions 
when the number of spatial variables d < 3. We establish the existence of 
solutions with the required regularity over arbitrarily long intervals of time 
when d < 2. 

1. INTRODUCTION 

In this note we consider the numerical approximation by the finite element 
method of the following nonlinear elliptic-parabolic system 

(1.1) Ut-A_AU =(U)IVq 12, XE , t E[O, T], 
-V (T(u) Vq$) = 0, 

where u = u(x, t), 0 = 0(x, t), ut = aulat, V denotes the gradient with 
respect to the x-variables and A = V * V is the Laplacian. These differential 
equations are studied for t in a finite interval [0, T] and for x in a bounded 
convex polygonal domain Q in Rd, d = 1, 2 or 3, together with initial and 
boundary conditions 

1.2) u(x, t) = , 0(x, t) = g(x, .t), x E A2 , t E [O, T], 
(12) U(X,0)=U0(x)X E . 
We make the assumption that the function a E C2 (R) and that, for some 
K,K>O andall sER, 

(1.3) O < K < C(S) < K, lx'(s)l + la"(s)l < K. 

This system models the electric heating of a conducting body [5] with u being 
the temperature, q the electric potential, and a the temperature-dependent 
electric conductivity. 

Let (, ) and denote the inner product and norm in L2 = L2(n) 
and HI - H1(Q) = {u E L2: IVul E L2}, HT = {u E H1: ulon = 0} 
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be the standard Sobolev spaces. The finite element method is based on the 
weak formulation of the above initial boundary value problem, where we seek 
u(t) E Ho', +(t) E HI with +(t) - g(t) E Ho' such that 

(1.4) (ut' %) + CVu , V%) = ((UM1V701, x), V% E Hol, t E [O, T], 
u(O) = uo, 

and 

(1.5) ((u)V0, VX) = O, VX E Ho', t E [O, T]. 

Let {Sh}h>o be a family of approximating subspaces of HI, where each 
space Sh consists of continuous piecewise linear polynomials with respect to a 
triangulation of Q with maximum meshwidth h. With each Sh we associate 
the subspace Sh = {Uh E Sh UhIloa = 0}. We assume that the family of tri- 
angulations is such that the standard interpolation error estimates [4, Theorem 
3.2.1] and inverse estimates [4, Theorem 3.2.6] hold. 

We first consider a semidiscrete approximation: find Uh (t) E Sh, Oh (t) E Sh 
with Oh (t) - 7rh g(t) E Sh such that 

(1.6) (uh,, X) + (Vuh, VX) = (d(uh)1Vqh 2, X), VX ESh, t E [O, T], 
Uh(O) UhO, 

and 

(1.7) (dx(Uh)Vqh, VX) = O, VX E Sh, t E [O, T], 
where 7rh : C(Q) -* Sh denotes the standard Lagrangian interpolation operator 
and Uho E Sh is an appropriate approximation of uo. For this method we 
prove an error estimate of the form 

IIUh(t) - u(t)I + IIOh (t) - (t) ? <.C(u, 0b, T)h2, t E [0, T], 
(see Theorem 3.1 below) under a certain assumption about the regularity of 
the exact solutions u and 0. This assumption is essentially the same as in 
the standard error analysis for the corresponding linear elliptic and parabolic 
problems. The main difficulty here concerns the treatment of the gradient- 
dependent nonlinearity: one has to deal with the expression 

(Uh)IVOh 12 _- (U)1Vq012 = dx(Uh)V(Oh + q) * V(q(h - ) + (I (Uh) -(U))1,02, 

where V(qh - 0) is formally only 0(h), and where Vq and Vqh enter in a 
nonlinear way. These difficulties are handled by means of a duality argument 
and by taking advantage of parabolic smoothing. In particular, we avoid using 
a maximum norm bound for Vqh, which would be difficult to obtain. 

We also consider a completely discrete scheme based on the backward Euler 
method with semi-implicit linearization: find Un E Sh, ?Dn E Sh with #Dn - 

7(hg(tn) E Sh such that 

(anUn, x) + (VUn , VX) = (U(Un-1)IV(Dn-12 %) x 

(1.8) VX E Sh, tn E (O, T], 

Uo = UhO , 

and 

(1.9) (a(Un)VDnVX)=O VXESh, tn E[O, T). 
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Here aU, = (Un-Un_1)/k, t, = nk, n =0, 1,2,... ,and k isthetimestep. 
For this scheme we show in Theorem 3.3 that 

11 Un - U(tn)II + 11(n - ?b(tn)11 < C(u, 0 , T)(h2 + k), tn E [0, T], 

again under the same regularity requirement as for linear problems. 
We begin the error analysis in ?2 by recalling some results about linear elliptic 

and parabolic finite element problems. The nonlinear error analysis is carried 
out in ?3, where it is assumed that the number of spatial variables d < 3, 
and that the exact solutions have minimal regularity. Finally, in ?4 we prove 
the global existence of solutions with the required regularity when d < 2. 
Our argument here builds upon the techniques of Cimatti [5], who showed the 
existence of weak solutions. We are not aware of any existence and regularity 
result in the three-dimensional case. 

There is a vast literature on finite element methods for nonlinear elliptic and 
parabolic problems. For example, we mention the work [6, 7] on the porous 
media equations, which are similar to the Joule heating problem. Roughly 
speaking, the porous media equations are (1.1) with the term a(u) Vq$2 re- 
placed by Vq$. Vu, where u is a concentration, 4 is the pressure, and Vq is 
the velocity. In [6, 7] the equation for 4 is solved by a mixed method where 
both q and Vq are approximated to order 0(h2), so that some difficulties 
that we address here are partly avoided there. 

After the present work was finished we became aware of the paper [ 18], which 
addresses the same problem as we do, but obtains nonoptimal results. 

Throughout this work we use the notation 11ullm,p = (Zjaj?m IIDaulI ) l/P 
for the norm in the standard Sobolev space Wpm = Wpm () with the usual 
modification for p = oo, and with the exception that I I11 and (, ) denote 
the norm and inner product in L2. We also write Hm = W2m when p = 2. 

2. LINEAR ERROR ANALYSIS 

In this section we collect some facts about linear elliptic and parabolic finite 
element problems that we will need in the sequel. Since aQ is a convex polygon, 
it is well known [9] that the Laplacian A is an isomorphism from H2 n Ho onto 

L2, and we let A-1 denote its inverse. Let Rh HI Sh be defined by the 
equation 

(2.1) (VRhu, Vx) = (Vu, Vx), Vu E Ho, XE Sh 

From the standard error analysis [4, Theorems 3.2.2, 3.2.5] for linear elliptic 
finite element problems we quote the error estimates 

(2.2) II(Rh - I)uI + hll (Rh - I)uI l,2 < Ch2IIuII2,2, Vu E H2 n Ho'. 

We denote by Ah: Sh -- Sh the discrete Laplacian defined by 

(-Ah%, 5 ) = (V%,5 Vq), V%, 5 E 1Sh 

and we let Eh (t) = exp(tAh) be the analytic semigroup generated by Ah, and 
Ph : L2 -~Sh the orthogonal projector. It is well known that Eh(t)Ph satisfies 
the following bounds: 

(2.3) IIEh(t)Ph vI + t1/2IIEh(t)PhyIIl,2 + tIIAhEh(t)Ph VIl < CII| |, t > 0, 
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for q e L2, where C is independent of h and t, reflecting the uniform 
analyticity of the evolution operator. In a similar way, for the discrete evolution 
operator Ekh = (I - kAh)-n associated with the backward Euler method, we 
have 

(2.4) llEkhPhV/ll + tl IlEk,hPhV/111,2 + tnhlAhE khPh V/l ? C IYt'H, tn > 0. 

We may now state and prove error bounds for linear parabolic finite element 
problems. Such results are common in the literature, but a particular feature 
of the error bounds presented here is that the regularity requirement is optimal 
and expressed in a form that is suitable for our regularity analysis in ?4. Similar 
results are proved in Chapter 2 of [ 1 7] for spatially semidiscrete approximations 
of the linear homogeneous problem, but are not readily available for the non- 
homogeneous problem and completely discrete schemes. Moreover, our proof 
technique is different from that of [17]; being based on (2.3) and (2.4), this 
technique will also be used in our nonlinear error analysis below. 

Theorem 2.1. (a) Suppose that u(t) E Ho' is the solution of the linear heat equa- 
tion 

(ut, x) + (Vu, VX) =(t) x), VX e Ho, t >0, 
(2.5) u(0) = uo, 

and that Uh(t) E sh satisfies 

(Uh,t, X)+(VUh, VX) = (f(t), X), VX ESh, t > 0, 

Uh(O) = uhO- 

Then, for t>0, we have 

(2.6) IIUh(t) - U(t)II < CIIuho - UOII + Ch2 sup (IIU(s)112,2 +SllUt(s)1I2,2), 

provided that the solution u has the regularity implied by the norms on the 
right-hand side. (b) If Un E Sh satisfies 

(an Un X) + (VUn, Vx) = (f(tn) X) VX E Sh, tn > 0 (2.7) Uou, 
Uo =Uh? 

then, for tn > 0, we have 

IIU -u(tn-)U < CIIUhO - uoII 

(2.8) + Ch 2sup (Iu(s)112,2+11ut(s)ll+sllut(s)112,2) 

+Ck sup (IIAl-utt(s)lI+sllutt(s)Il). 
o<S?<tn 

Proof. We prove (2.8) only; (2.6) can be proved in a similar way; indeed, it 
essentially follows from (2.8) as k -O 0. See also [17, Lemma 4 of Chapter 2] 
for a different proof of (2.6). Let for simplicity 

F(u) = sup (|IU(S)12,2 + lUt(S)1l +sllUt(S)112,2) 
O<su<tn 

G(u) = sup (IA1/-lutt (S) I + Sli utt (S ) I 
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We write 

en Un -U(tn) = (Un -RhU(tn)) + (RhU(tn))-U(tn)) n + Pn 

and the required estimate for pn follows from (2.2): 

(2.9) IIPnII < Ch 2 |U(tn)112,2 < Ch 2F(u). 
Moreover, we have 

(2.10) IlanPnll < Ch2t-lF(u), tn > 0 

because 

IIO3PnII < Ch2t-I1 max (tllut(t)112,2) ? Ch2t -F(u) 

for tn > t2, and 

IIalP II < Ch2k-1 max IIu(t)112,2 < Ch2tu1 F(u). 
O<t<k1 

The remaining term On belongs to Sh, and using (2.7), (2.5) and (2.1), we 
find that it satisfies the equation 

anOn -AhOn = Ph (-anPn + On) 

where On = Ut(tn) - anU(tn). Hence, by Duhamel's principle, 
n 

nh= En + kZEkh J+Ph (-ajPi + 4i. 
j=l 

Let [n/2] be the integer part of n/2. Summation by parts gives 
[n/2] [n/2] 

-k E Eknhj+'lPhOiPI = EknhPhPO -Ejh [I PhP[n/2] + k E (ajEkh )PhPi, 
j=1 .=l 

where 9jEk = -AhEkhE ,kso that 

[n/2] 

On= Eknhp -Eh [ Php[n/2] -k E AhEk, i+'PhPJ 
j=1 

n [n/2] 

k Ekn-j+Phajpj + k , AhEkhj ( Ph Ph A)I 

j=[n/2]+1 j=1 

[n/2] n 7 

+ k l AhEkn 
j 

PhA'oj + k Z . Eknhi+ Phoi-E Rj- 
j=1 i=[n/2]+1 i=1 

We proceed to estimate the seven terms on the right-hand side. Using the 
smoothing property (2.4), the error bounds (2.9) and (2.10), we have 

4 [n/2] n 

IlRill < C(lleoll + IIP[n/2]ii) + Ck tn-11+1 II + Ck Z llaIpjlI 
i=1 j=1 j=[n/2]+1 

[nl2] n 

< Cileoll + Ch2F(u) (1 + k n + k t- 
j=1 j=[n/2]+l 

< Cileoll + Ch2F(u). 
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For the fifth term we use the fact that A-' P A-1 = (Rh - I)A-1, so that by 
(2.2) and elliptic regularity 

Jj(AK1Ph - A1)t1jj = |I(Rh -I I) tIll < Ch2I1wA-1 2, ? Ch2jj 
< Ch2 max Ilut(t)II < Ch2F(u). 

tj_ I<t<tj 

Hence, 
[n/2] 

11R511 < Ch2F(u)k E t7-)1+ < Ch2F(u). 
j=1 

For the sixth term we note that 

11w\ lIl = k-1 (t- tj1)A IUtt(t)dt < k max lIAulutt(t)II < kG(u), 

so that 
[n/2] 

II611 < CkG(u)k tn-lj < CkG(u). 
j=1 

Finally, we have 
|aI I||jI < Ck tj -G(u), ti1 > O, 

because 

I1 = | k-1 (t - tma. <)utt(t)dt ? < ? Cktjy G(u), 

for tj > t2, and 

ioI 11 = k1 jktutt(t) dt < max tlutt(t)JI) < G(u) = kt-1G(u). 

Hence, 
n n 

11R711 < Ck Z 1l(oj1l < CkG(u)k E t. 1 < CkG(u). 
j=[nl2]+1 j=[n/2]+1 

Taken together, these estimates prove (2.8). 0i 

3. NONLINEAR ERROR ANALYSIS 

3.1. The semidiscrete case. Let Uh, Oh be the semidiscrete finite element 
approximations of the solutions u, Nb of the nonlinear problem (1.1). In this 
section we estimate the errors u(t) - Uh(t) and O(t) - q$(t) uniformly over a 
finite time interval 0 < t < T under minimal assumptions about the regularity 
of u and 0. The error analysis is carried out under the assumption that the 
number of spatial variables d < 3; the regularity assumptions, however, have 
only been verified for d < 2, see ?4 below. The result is presented in the 
following theorem. 
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Theorem 3.1. Let u, 0 and Uh, Oh be solutions of (1.4)-(1.5) and (1.6)-(1.7), 
respectively, with UhO chosen so that 

(3.1) jjuo - UhOII ? Mi1h2. 

Assume further that d < 3 and that 

(3.2) sup (IIu(t)112,2 + tllut(t)112,2) < M2, 
O<t< T 

(3.3) sup 119(t)IIH2(8Q)+110(t)112,2+110(t)||l,o < , 
O<t< T 

for some positive numbers T and Mi, i = 1, ... , 3. Then there is a constant 
C= C(K, K Ml, M2, M3, T) such that 

(3.4) 11u(t) - Uh(t)I| + Ik10(t) - 0h(t)I| < Ch2, t E [0, T]. 

Here, 11 IIH2(a Q) is defined by summation over the flat parts of the polygon 
aQ. In the remainder of this section we let C denote various quantities that 
may depend on the data of our problem as in the statement of Theorem 3.1. 
All estimates that are derived hold uniformly with respect to t E [0, T]. We 
prepare for the proof of Theorem 3.1 by proving some preliminary bounds for 
0(t) -Oh (t) . 

Lemma 3.2. Under the assumptions of Theorem 3.1 we have 

(3.5) IMV(q(t) - I(t))j < C(h + ||u(t)- Uh(t)I)X 

(3.6) Ik0(t) - Oh(t)II < C(h2 + 11U(t) - Uh(t)II + h d/611U(t) -Uh(t) 112). 

Proof. Since all results below are uniform in t, we do not make the t-depen- 
dence explicit. Let e = - Oh . It follows from (1.5) and (1.7) that 

(3.7) (1(uh)Ve0, VX) = ([o(uh)- o(u)]Vq$, V%), VX E Sh, 

and 

(3.8) (U(u)VeO, VX) = ([U(uh) -U(u)]Vqh, VX), VX E Sh. 

Since 7(h'k - Oh e Sh, we have from (3.7) that 

(o(uh)Vek, VeO) = ( (uh)Ve, , V(- 7rh0)) + (r(Uh)Vek, V(7h -Oh)) 

= (U (uh)Ve , V(q- 7rh 0)) 

+ ([ar(Uh) - a(u)]V, V(7 - h))- 

It now follows from (1.3) and (3.3) that 

11|Ve0112 < C(|V+||V0z+| lhU||Xisiv0-h)l Ive~I ? cIIveOII iv#O - 7rhOb)II + hluh - UII 11k111 ,oIIV@kh - 7rh0b) ii 
< C(|iVeli lIV(0-7 hk)11 + llUh-Ull(IIV(0-7rhk)11 + llVell)) 

<C(11v(0-1h0)hI + hUh -u12) + 2jIVeqlI2. 

Hence, 

||Ve,|| ? C(||V(s- hO)l + h1uh-uhl), 
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which immediately yields (3.5) in view of an interpolation error estimate and 
(3.3). 

The L2 estimate of e1 is obtained by the standard duality argument. Let VI 
be the unique solution of the Dirichlet problem 

(3.9) -V * (a(u)VV/) = e in Q; 0 =Oon aO. 

Then the standard regularity estimate yields (recall that Q is a convex polygon) 

IIV'112,2 < CAVl11 = Cla'(a)VuVVI+ek 

Using (1.3), H61der's inequality, an interpolation inequality (see (4.2) below), 
the trivial estimate iiV'111,2 < CIIe0II, and 11uII2,2 < M2 from (3.2), we obtain 

iIV'112,2 < C(iiVUIIO,6 IIVV/I10,3 + Ile,I1) 

-<C (|U|12, 2 | |1,2 /1 12,2+ lX) 

< C(iiuii2/(2 d/)iiy,il,e2 + iieoll) + 2- 1 iVIi2,2 

< Cilell + 11ViI2,2- 

Hence, 

(3.10) IIVI12,2 < Clleoll. 

From (3.9) and Green's formula it follows that 

IIe0II2 = -(V_ (a(u)VV), e+) 
= (o(u)VyV, Ve,) - (a(u)Vy * v, e+) 

(3.11) = (u(u)V(V - Vh), Ve6) + (u(u)VVh, Veo) 
-(o(U)VV I V, g-7rhg) 

TI + T2 + T3, 

where Vh = hV E eSh, and where we have used (, *) to denote the inner 
product in L2(0K), and v is the unit outward normal vector on AO. 

The first term on the right of (3.1 1) is easily estimated by means of an inter- 
polation error bound, (3.5) and (3.10): 

IT,I < CGIV(VI - V'h)II IIVeoll < ChliV'112,2 C(h + IIU - Uhii) 

< C(h2 + IIu - Uhil)lleill. 

Using (3.8), we have 

T2 = (er(u)VeO, VVIh) = ([Cr(Uh) - o(U)]V$h, VWVh) 
= ([(Uh) - (u)]V, VVIh) + ([V(Uh) - (U)]V(h - ), VV) 

+ ([cT(Uh) - (u)]V(h -0) V(VIh - V))- 

Hence, 

IT2I < CIIU-Uh II (i1biii,ooi IVIhiil,2 + ilVeI1o0,311VIii1,6) + CiiVe0ii iiV(Vh-V)II 
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Using the facts that 1111I1,, ? M3, IIYIhII|,2 + II|II1,6 ? CG| /12,2 < Clleoll and 
IIV(yVh - V')II < ChlIVII12,2 < ChlleIll, we obtain 

T21 < C (IIU - UhII (1 + IIVeII0o,3)+hIIVe0I )IIlell. 

By interpolation error estimates, an inverse estimate, (3.3) and (3.5) we have 
here 

IIVe0IIo,3 < IIV(k - 7trh)IIO,3 + IIV(7rhk -'Oh)IIO, 3 
< Ch 1d/6I110112,2 + Ch-dl6 IIV(7rh - JIh) 

< ChI-d/616q110212 + Ch-d16 (ChII112,2 + IlVeoll 

< C(1 + h d16IIU _Uh||) 

so that 

I T21 < C (h2 + IIU - UhII + h d/6 11 U Uh 112) Ieoll. 

Finally, we have 

IT31 ? Cllg - 7rhgIIL2(aU)iivIi2,2 < Ch2II gIIH2(an)II eII< Ch2iIeqII , 

where a trace inequality, an interpolation error estimate and (3.10) have been 
used. Together, the above estimates prove (3.6). 5 

Proof of Theorem 3. 1. It is convenient to split the error into two parts: Uh - U- 

(Uh - Uh) + (Uh - U), where Uh: [0, T] --+ Sh is uniquely defined by 

(3.12) (^h, t, X) + (Viuh V%) = (F (u, X), V% e Sh , t e [O , T], 
Uh(O) = UhO, 

with F(u, q) = x(U)IVq12. Applying the known error analysis for linear 
parabolic equations, we obtain 

(3.13) IlIUh(t) - U(t)11 < Ch2, 

where C depends on M1 and M2, see Theorem 2.1. 
Forming the difference between (1.6) and (3.12), we have for U = Uh - uh 

that 

St -Ah; = Ph (F(Uh, 5 h) -F(u , 0) , t E [05 T]; c(0) = O. 

Hence, the variation of constants formula implies that 

(3.14) IKC(t)II < j Eh(t - s)Ph (F(Uh(s), Oh(S)) - F(u(s), 0$(s))) ds. 

We proceed to estimate IIC(t) by bounding the right side in various ways. In 
doing so, we shall need several bounds for the operator Eh (t)Ph . In addition to 
(2.3) we quote from [11, Lemma 5.2] a bound of the norm of Eh(t)Ph consid- 
ered as an operator from L2 into Loo, namely, for any e > 0 there is C, > 0 
such that 
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By duality we also have the same bound for the norm of Eh(t)Ph L I L2 
that is, 

(3.16) IIEh(t)Ph V|l < CE td/464 V/Io,i , t > 0, f > 0. 

In fact, 

(3.17) IIEh(t)Ph V/Il = sup I(Eh(t)PhV, x) = SUp (V, Eh(t)PhX)I 
XEL2 lxiXEL2 li 

since Eh(t)Ph is selfadjoint, so that (3.16) follows from (3.15). 
We begin by deriving a preliminary low-order estimate of II (t)J I. We have 

||F(Uh 5 Oh)- F(u , O)) loI 

< I1U(Uh)V(0h + 0) * V(qh - q)o, I + II(o7(uh) -_ o(u))1V,0k2110,1 

(3.18) < C(II'V5hII + IIV$III)IV(kh - b)II + CIIuh ul ,l I, 

< C (h+IIuh-Ul), 

where we have used the easily proved fact that IIVqh(t)II + IIVP(t)II < C. the 
assumption Ij0(t)jIi,,, < M3, and the error bound (3.5). Hence, by (3.14), 
(3.16) and (3.13) we have 

HlUhM (t-ut UM < Il Uh (t)- u(t)11 + II C(0I 
rt 

? Ch2 + C j(t - s)`IIF(uh(s), q h(S)) - F(u(s), k(s))IIo, 1ds 

< Ch2 + C (t - s) (h + hIUh(S) - u(s)/I) ds 

rt 
< Ch + C J(t - S)rllUh(s) - u(s)II ds, 

where it is possible to choose a E (3/4, 1), since d < 3. Hence, a variant of 
Gronwall's lemma (see, e.g., [14, Lemma 5.6.7], [10, Lemma 7.1.1] or Lemma 
3.4 below) yields the preliminary bound 

Iluh(t) - U(t)II < Ch. 
Inserted into (3.5) and (3.6), this gives 

110h0(t) - (t)011 1,2 < Ch, 
(3.19) Ibh(t) - (t)II < C(h2 + IIUh(t) - U(t)II) 

The reason for the suboptimality of the preliminary bound is that we esti- 
mated F(uh, kh) - F(u, q$) in terms of V(qh - 0q), which is only 0(h). In 
order to obtain an estimate of second order, we shall use a duality argument 
to remove the gradient from the latter term. This argument requires a more 
accurate expansion of F(uh, Ph) - F(u, 0s), namely 

F(Uh, kh) - F(u, 0) = [(Uh) - (u)]1VI2 
+ 2o(u))VO *.V(qh -k0) 

(3.20) + 2[o(uh) - U(u)]Vq$- V(qh - q) 

+ oT(Uh)|V(h -0)12 

_R1 + R2 + R3 + R4. 
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Using (2.3) and (3.16), we shall estimate each of the terms IIEh(t - s)PhRj(s)II 
and substitute the result into the right-hand side of (3.14). 

Omitting the dependence on t - s and s in intermediate steps, we obtain 
for the first term 

IIEh(t - s)PhRl,(s)I = IIEhPh ([a(uh) - (u)]WVq12) | < Cj|uh 1- ul O 

<CII uh(s) - u(s)II. 

For the second term we use a duality argument (cf. (3.17)): for x E L2 we have 

(Eh(t - s)PhR2(s), X) = 2(V(qh - 0), a(U)VOEhPhX) 

=-2(Oh - 0b, V - [a(U)V0EhPhX]) 

=-2(qh - 0, c(U)Vq V[EhPhX]), 

since V - (o(u)Vq) = 0. Hence, by (2.3), 

I(Eh(t - s)PhR2(S), X)I < 2110h - |bI 11011l,o IlEhPhX li ,2 

< C(t-5)1/2 |q$h(s)-q(s) 1 l_ii S 2 

so that, in view of the second estimate in (3.19), 

IIEh(t - s)PhR2 (s) |I < C(t _ s)-l/2 (h2 + ||uh(s) - u(s)I|) 

By (3.16) there is a E (3/4, 1) such that 

iEh(t - s)PhR3(S)hI < C(t - s)a 1[o(Uh) - cr(u)]Vq * V(h - 0)io, 1 

< C(t- S)a YIlUh - ull 110111,o(I V110hll + IIV0ii) 

? C(t - s)aIlUh(s) - U(S)1 
Similarly, by the first estimate in (3.19), 

iiEh(t - s)PhR4(S)ii < C(t - s)-a |(uh)iV(0h -_ )1j2j1,1 

< C(t - S)-al () - q(S)l2 ?1 C(t - 2 

Combining these bounds with (3.14) and (3.13), we obtain 

(3.21) IIuh(t) - u(t)ll < Ch2 + C j(t - s) - (h2 + h1uh(s) - u(s)hI) ds. 

Gronwall's lemma now yields the desired bound for hIuh(t) - u(t)hI in (3.4), and 

hence, in view of (3.19), also the bound for 11kh(t) - q$(t)jl. 11 

3.2. The completely discrete case. We now turn to the completely discrete 

scheme. Our result is the following. 

Theorem 3.3. Let u, 0 and U, , 4, be solutions of(1.4)-(1.5) and (1.8)-(1.9), 
respectively, with UhO chosen so that 

IIUo - UhOll < Mlh2. 

Assume further that d < 3 and that 

sup 
O< U(t)(12,2 + llut(t)0l + IIA-1utt(t)ll + tllut(t)112,2 + tllutt(t)hl) < M2, 

0<t<T 

SUp (ii g(t) IIH2(aQ) + 11$(t)112,2 + 110(t)II1,o + II10t(t)11,2) < M3, 
O<t<T 
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and that k < M4hd/6 for some positive numbers T and Mi, i = 1, ..., 4. 
Then there is C= C(K, K, M1, M2, M3, M4, T) such that 

IIU(tn) -Unll + 11k(tn) - (Inll < C(h2 + k), tn E [O, T]. 

We will need a discrete version of the generalized Gronwall lemma that we 
referred to in the previous proof. We formulate this in the following lemma, 
where we use the convention that a sum is considered to be empty if its upper 
limit is smaller than its lower limit, that is, EImjn a, = 0 if m < n. 

Lemma 3.4. Assume that the sequence (0n satisfies 

n-I 

O ?< pn < A +BkZEtn 1tI+fl for tn E [O, T], 
1=0 

where A, B, T are. positive numbers and 0 < ,B < 1. Then there is a constant 
C= C(fl, B, T) such that q'n < CA for tn E [0, T]. 
Proof. Iterating the given inequality once, using the inequalities 

n-I tn 
k , tn-'l+ < ](tn - 5)-1+/? ds = C tfl 

1=0 

n-I tn 

k tn ll+t-jt+ < CflJ (tn _s)-1'+(s - tj)-1+7 ds t-=+4+7 

l=j+1 t 

valid for 0 < ,B, y < 1 , we obtain 

n-I n-2 n-l 
6On ? A +ABkZ t-l+ + B2k (k j t2-+flt-1+fl ij ) 

1=0 j=O I=j+ 1 

n-2 

< Ci(, B, T)A + C2(fi, B)k Et) 1+2fl. 

1=0 

After N - 1 iterations, where N is the smallest integer such that -1 + N,l > 0, 
we have 

n-N 

(Pn < Cl (f, B, T)A +C2(fi, B)k E t- z INfl ( 
1=0 

n-N 

C1(,B, T)A + C2(G8, B, T)k lV 
1=0 

and the desired conclusion follows by the standard Gronwall lemma. 5 

Proof of Theorem 3.3. The proof is a generalization of the proof of Theorem 3.1. 
We begin by splitting the error into two parts: Un - Un = (Un - Un) + ( Un - Un), 

where Un E Sh is uniquely defined by 

(3.22) (nUn, X) + (VUn, VX) = (F(Un 5 On), X), 5 % E Sh, tn E [0, T] 
Uo = UhO, 



A FINITE ELEMENT MODEL FOR THE JOULE HEATING PROBLEM 1445 

with u, = u(tn) O,n = q$(tn) and F(Un, q$,n) = o(un)jVqn 12. Applying the 
known error analysis for linear parabolic equations, we obtain 

(3.23) jU - u,lj < C(h2 + k), 

where C depends on M1 and M2, see Theorem 2.1. 
Forming the difference between (1.8) and (3.22) and applying the variation 

of constants formula, we have for Cn = Un - Uin that 

n-I 

(3.24) - lICnll < k|| Ekn- Ph (F(Ul I,) 1- F(uj+j . 01l+1)) 
1=0 

In addition to (2.4), the discrete evolution operator EknhPh satisfies the bound 

(3.25) IIEehPhtVIl ? n I/ Iy,Io,i, tn > O, E > 0. 

The proof of this is analogous to that of (3.16). Indeed, by inspection of the 
proof of [1 1, Lemma 5.2] it is clear that a completely discrete analog of (3.15) 
holds and hence (3.25) follows by duality. 

Lemma 3.2 is directly applicable to the equation for Dn and gives 

IIV(Dn - qn)jI < C(h + IIUn -Un) 
(3.26) 

||~I~n - knll < C(h2 + j|Un - Unji + hd/6IIU -Un|2). 

Hence, 

(3.27) JIF(Un-1, | Dn-i)-F(un-, bn-1)110,1 ? <CQ + jUn-i-Un-11) I 

cf. (3.18). In a similar way we have 

IIF(Un-I , kn-) - F(Un Sn)110, I 

? IIU(nin-)VIMOn-1 + q$n) 
- 

V(Gn-I 00110, I 

+ l((7(Un-1) - oT(un))|Vqn 12jjo, 1 

(*~~~~ 28 II(|VOn-ill + IIVOn||)||0n-I 
- Onh,2- (3.28) ?1(12nj 

+jvnj kn- /nI, 

+ Cllun-i Unll lkknlln,oo 

? C( i 5n-I -nlli,2 + hlUn-I - Unll) 

< Ck sup (l11t(t)1|1,2 + llUt(t)Il) < Ck. 
O<t< T 

Therefore, 

jIF(Un-i Dn-1) - F(Un 5 On)jj0,1 < C(h + k + jUn-1- Un-ill) 
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so that, by (3.24), (3.23) and (3.25), 

||Un Unl < li/n - UnIl + i4Cnil 
n-I 

? C(h2 + k) + Ck t ta 1llF(U1, 1i) - F(u1+, e$i+1i)ljo, 1 
1=0 

? C(h2 + k) + CkE t-a (h + k + Iu1 U -ull) 
1=0 

n-I 
? C(h+k)+CkEtna-I lUl lUl, 

1=0 

where we have chosen a e (3/4, 1). Hence, Lemma 3.4 yields the preliminary 
bound 

11 Un -Un 11< C(h +k), 
which, in view of (3.26), leads to 

hl4Dn -On II I, 2 < C(h + k), 
(3.29) llDn - Oknil < C(h + k + hlUn - Unl), 

where we have also used the assumption that kh-d/6 < M4. In order to com- 
plete the proof, we repeat the steps leading to (3.21) using (3.28) and replacing 
(3.27) by a more accurate expansion as in (3.20). This gives 

n-I 
Un - Un11 < C(h2 + k) + Ck n-tnhlU I- u_l , 

1=0 

so that 11 Un - un 11 < C(h2 + k) follows by the Gronwall argument of Lemma 
3.4, and hence, in view of (3.29), we also obtain /IDn - O$n iI < C(h2 + k) . O 

4. EXISTENCE AND REGULARITY 

In this section we study the solvability of the system (1.1 )-(1.2). The exis- 
tence of global weak solutions in two space dimensions (Qi c R2) was shown 
by Cimatti [5], see also Rodrigues [15] and Allegretto and Xie [2] for exis- 
tence results for related problems. The regularity of these solutions, however, is 
insufficient for the purpose of proving error bounds of optimal order, cf. Theo- 
rems 3.1 and 3.3. Building upon the techniques of [5], we obtain global strong 
solutions with the required regularity in one and two space dimensions. The 
three-dimensional case remains an open problem. 

Theorem 4.1. Assume that Q c Rd, d < 2, is a bounded domain whose bound- 
ary is either smooth or a convex polygon. Let T > 0, r > 2 and assume 
that uo E H2 n Ho, g E Lw ([O, T], Wr2), gt E Loo([O, T], H2) and gtt E 
Lo,([O, T], H'). Then (1. 1)-(1.2) has a unique solution u E C' ([0, T], L2) n 
C([O, T], H2), q E Lo,([O, T], H2). Moreover, there is a constant C, depend- 
ing on T, r, uo,; g, Q2 and on a through the constants K, K in (1.3), such that 
for t E [0, T] we have 

hlu(t)112,2 + hlut(t)hl + hlA-1utt(t)hl + thlut(t)II2,2 + thlutt(t)0l 

+ I11(t)112,2 + 11P(t)II,oo + II?t(t)II1,2 < C. 
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In order to prepare the way for the proof, we recall some facts that we shall 
need. The assumption about Q guarantees that for any p E [2, oc) there is C 
such that 

(4.1) IIuII2,p < CIIAuIo,p, Vu E w2 n Ho, 

see [9]. Under even weaker assumptions about Q c Rd we have the following 
interpolation result [1]: let 1 < p < o, m > 1 and assume that u E Wp 
Then there is a constant C = C(m, p, q, d, Q) such that the inequality 

(4.2) IIUO1,q < CIiuii,k0iuiiS P, where 0= d = _ _ 

holds for q E [p, 00] if m - d/p > 0, for q E [p, 00) if m - d/p =0, and for 
q E [p, -d/(m - d/p)] if m - d/p < 0. Note that O < 0 < 1. We shall also 
use a theorem of Meyers [13], which we quote here in a special case suitable 
for our purpose. We use the standard notation W1 = {u E Wql :lan = 0} and 
W7-' is the dual space of WI, , where q and q' are conjugate exponents. 

Theorem 4.2 (Meyers [13]). Assume that Q c Rd has the property that, for 
some q E (2, 00) and L > 1, the Laplacian A is an isomorphism from W1 
onto W'- with 11A II < L, and let the function a satisfy the inequalities 
0 < K < a(x) < K for all x E Q. Then there are p E (2, q) and C > 0 
depending only on q, K, K, L such that the following holds true: Let f E (Lp)d 
be a vector field and let u E Ho be the unique solution of 

(aVu, Vx) = (f, Vx), VX E Ho. 

Then u E W1 and IIVullo, ? CIIfIIo,p 

The assumption in Meyers' theorem is satisfied, for example, if Q c R2 is 
bounded and OQ is either smooth [12] or a polygon [8]. See also [3] for a 
modem presentation of Meyers' theorem, and [16] for a finite element version. 

Proof of Theorem 4.1. Let Vm be the eigenspace corresponding to the m small- 
est eigenvalues of the operator -A with domain of definition H2 n Ho . We 
consider the initial value problem 

U(t) E VmE 

(4.3) (Ut, % ) + (V U, V%) =(U(U)IV(D12 , %), 8 EVm~ t> O, 
(U(O), %) = (Uo Z %) Z ' VX E VmE 

where ID(t) is determined by the linear elliptic boundary value problem 

(4.4) (D~?(t) E H1, ??((t) - g(t) E Ho', 

(u(U)VD,VX)=0, VXEHo, t>0. 

Clearly, given U(t) and g(t), there is a unique solution ??(t) of (4.4). It 
follows that (4.3) is an initial value problem for a finite-dimensional system of 
ordinary differential equations for the Fourier coefficients of U. Hence, there 
exists a unique solution to (4.3) on a time interval [0, Tm], where Tm depends 
on uo and m. We proceed to derive a priori bounds, which show that (4.3) 
has a solution on the prescribed time interval [0, T]. These estimates will also 
allow the passage to the limit in U and D as m -x 00, yielding the existence 
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of a solution u, q to (1.1 )-(1.2) with the desired regularity. This passage to 
the limit is rather standard and we omit the details (cf. [5]). 

Throughout this proof we let C denote various quantities that may depend 
on the data T, r, uo, g, Q and on a through the constants K, K in (1.3), 
but not on m and t. All estimates that we derive below hold uniformly with 
respect to t E [0, T]. 

Step 1. We begin by showing some preliminary estimates of (D. The starting 
point is the maximum principle, which yields 

(4.5) III(t)IIo,oo < Ijg(t)1Io,co, < C. 
Next we apply Meyers' Theorem 4.2 to equation (4.4), which implies that there 
is p > 2 such that IIV(IIIop < CIjVgIIo,p. The constant C depends only on 
Q and a through the bounds in (1.3). The optimal value of p is unknown; 
for simplicity we assume that 2 < p < r. Together with (4.5), this shows that 

(4.6) II(D(t)IIj,p < C. 

Further estimates of ( depend on derivatives of a(U), and we shall take this 
carefully into account. 

First we note that equation (4.4) implies -a(U)A(D - Va(U) * V(D = 0, so 
that, by H61der's inequality, 

II(I0= a'(U) - .70 < CIIVUIIo,qiIIV(DIIo,q, ,P ||a(U) 0, p 

for any q, q' satisfying 1/q + 1/q' = 1/p. Applying the regularity estimate 
(4.1) to the function (D - g E Ho, we thus obtain 

IIDII2,p < C?{|A?Dto,p + 119112,p) < C(1 + IIVUIIo,qiIIV4IIo,q). 
Hence, using also the interpolation inequality (4.2) and (4.6), we have 

II(DI12,p < C 1 + JIU112,2110)11l pI1011 I-a II<II2,p ? C(i + 2 - 

? C(1 + IIUII2211) + 0II?II2,p 

where a = 1 - d/p + d/q = 1 - d/q'. In the last step we also used Young's 
inequality 

(4.7) ab < e 1-lloallo + ebll(1-0) , e > O, 0 < 0 < 1 . a. b > O. 

For the above estimate of JIVUIIo,qi to hold, it is required that q' < 00, which 
in its turn is equivalent to a < 1 . We have thus proved the preliminary estimate 

(4.8) II(t)I112,p < C (1 + IIU(t)II1a)' for a E [1 - dl/p, 1 ), 

where C is independent of a. We next proceed to show that there are ,B < 1 
and C > 0 such that 

(4.9) 11D(t)II,, 00 + IID(t)II2,4 ?-C(i + 
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In fact, arguing as above using (4.6) and (4.8), we have 

IIV0110,oo < CIOI-llolll-p1?1 < C(1 + iiu11/a) 

where y = d/p < 1. By taking a sufficiently near 1, and in view of the 
maximum norm estimate in (4.5), we obtain the desired sublinear estimate of 
l11l1, . in (4.9). Similarly, 

1117ll 4 < CI(DII' l-p(D 112 p ( II12,/2a 

where now y = d/p -d/4. Since 2y = (4/p - 1)d/2 < 1 , the bound for 1111I2I4 
in (4.9) follows by taking a sufficiently near 1 . 

Remark. This is where the restriction to two space variables occurs: if d = 3, 
then we must have q' < 6 and a < 1/2, so that we can only guarantee that 
f1 < 3 in (4.9). 

Step 2. We now estimate IlUll2,2 and IlUtll. We begin by noting that it 
suffices to estimate IlUtll. Indeed, equation (4.3) implies that Ut - AU = 

Pm (a(U)IVDI2), where Pm denotes the orthogonal projection onto Vm. Hence, 
using the regularity estimate (4.1), (4.9) and (4.7), we obtain 

IlUll2,2 < CIIAUII < C(llUtll + Ila(U)1VI02II) 

? C(llutll + 11I,4) < C(1 + llUtll + IIuII2,2) 

? C(i + llUtll) + 'IIUi12,2, 

since ,B < 1. This shows that 

(4.10) IIU(t)112,2 < C(1 + IIUt(t)ll). 

Taking x = Ut in (4.3), we obtain 

IIUt112 + I d IIVUll2 = (a(U)IVI1I , Ut) < CIIIII2,4IIUtII 

? C(1 + IUtIIfl)IIU tll < C+ 2IIUtII2, 

since ,B < 1, where we have employed (4.9), (4.10) and (4.7). Integration with 
respect to t then yields 

t 
(4.1 1 ) J IIUt112ds + IIVU(t)112 < CIIV(pmUO)112 + Ct < C, 

since U(0) = PmUo, where Pm is bounded independently of m with respect 
to the norm lV . 11. 

In order to obtain further estimates of Ut, we differentiate equations (4.3) 
and (4.4) with respect to t. Beginning with (4.4), we have 

(4.12) (a(U)VDt, VX) = -(a(U)tVD, VX), VX E Ho. 

Straightforward estimates based on taking x = Ot - gt give 
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so that in view of (4.9) and (4.10) 

(4.13) llDt(t)111,2 < C( + It(t)112) 

Next we note that the source term in (4.3) may be transformed as follows, by 
Green's formula and equation (4.4): 

(af(U)IV1I2, x) = -(a (U)DVD, VX), VX E Vm. 

Differentiating equation (4.3) with respect to t, we thus have 

(4.14) (Utt,) + (7Ut, V%17) = -((uf(U)DV(D)t, V%), V% E Vm. 

With x = Ut this leads to 

(4.15) ||IUtI j2 + IIV UtI ? II(a(U)DVID)tII2. 

Here we have 

jj(a(U)0V0)tjj < jja'(U)Ut4V0II + jja(U)0tV0II + jja(U)DV?tjj 

< C IlUtll Jj0j0olojj0jjll,oo + jj0tjjo,qjj0jj1,p + Jj(Dj0,oojj(Dtjj1,2) 

where 1 /q + 1 /p = 1/2. Using Sobolev's inequality IIDt IIo, q < CI IDt I, 1 2 and 
known bounds for 'D and Dt in (4.5), (4.9), (4.13) and (4.10), we arrive at 

II(U(U)IDVID)tjj < C(1 + IIUtII2). 

Using the fact that U(0) = PmUo, so that IIU(0)112,2 < CI IAU(0)II < C11Auo01 < 
C, and hence by (4.9), 

IIUt(O)II < IIAU(0)II + IlPm((a(U(O))IV(D(0)12)11 

< IIAU(0)11 + C11I(0)11IU,4 < C(1 + IIU(0)112,2) < C, 

we integrate (4.15) to get 
rt rt 

IIUt(t)112 + j IIVUt1I2ds < CI+ Cj IIUtII4ds. 

Applying Gronwall's lemma together with (4.1 1), we obtain 

(4.16) 11Ut(t)112+ J IIVUtII2ds < Cexp t11utI2 ds) < C. 

Substituting this result into (4.10), (4.9), (4.13) and (4.8), we may conclude 

(4.17) 11U(t)112,2 + IAU(t)11 + 110(t)112,2 + 110(t)III,oo + 110t(t)111,2 <- C. 

Step 3. It remains to bound A1- IUtt(t)II, tIIU1(t)112,2 and tIIUtt(t)II. We begin 
by noting that Ut - AUt = Pm(U(U)lVqFI2)t, where, in view of (4.17), 

jj(a(U)IV0j2)tjj < IIa'(U)UtIV0I2II + 21Ia(U)VO * VOtIl 

(4.18) < C(llU~~~tll 114>11l2,0 +Jj(Djj1,oo11(Dt111,2) < C, 

so that 

(4.19) IIUt(t)112,2 < C(1 + IIU(t)II)1 
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and also 
IA- IUtt(t)ll < IIUtll + IIA-'(a(U)IVOII2)tII < C. 

It now only remains to estimate tl Utt (t) I. In order to do so, we differentiate 
equation (4.3) with respect to t and substitute x = Utt, which after some 
simple manipulations gives 

IIUttII2 + d 1IV UtII2 < II(U(U)I ,V7I2)tII2 < C 

where we employed (4.18) in the last step. Multiplication by t and integration 
now yields 

(4.20) jsuttI12ds+tllvuUt(t)II2 <C +j VUtI2ds < C, 

in view of (4.16). In the next step we differentiate equation (4.14) with respect 
to t and substitute x = Utt to obtain 

(4.21) diIIUtt|12 +llVUtt|12 < II(a(U)DVD)ttII2. 
Here we have 

( U)(DV(D)tt = u(U)ttDVD + u(U)DttVD 

(4.22) + a(U)DVDtt + 2a(U)tDtVD 
+ 2a(U)tDVDt + 2a(U)DtVDt. 

In order to estimate the terms on the right, we shall repeatedly use bounds from 
(4.17) together with 

IlUtIIO,,oo < CIIUtII2,2 < C(1 + IlUttll) 

which follows from Sobolev's inequality and (4.19). Thus, 

Ila(U)tto,VII1 = 11(a'(U)Utt + a"(U)U?2)0V1II 

< C IlUttll + IlUtllI lUtII0oo)l1101121,oo 

< C(1 + iiuttl 

and 

IIU(U)t0tV0II + IIU(U)t0V0tII < CIIUtII0ooII0OtII1,2II0II1,oo < C(1 + IlUttll) 

Similarly, 
llU(U)0tV0tII < CII0tIIO,ooII0tII1,2 < CII(tIO,looo. 

Application of Meyers' theorem to equation (4.12) shows that 

IIVItIIo,p < C(IIa'(U)UtVIDIIo,p + IIa(U)VgtIIo,p) 

< C (1 + IUtid,ioo,IIii1,p) < C (1 + IlUttll 

where p E (2, r] is the same as before, and since IIDtIIO,O < CI IDt I,p we may 
conclude that 

IIu(U)DtV7tII < C(1 + IIUttIl). 

Finally, for the remaining two terms in (4.22) we have 
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In order to bound IIDtt II I2, we differentiate equation (4.12) with respect to t 
to get 

(a(U)VDtt, V%) = -(u(U)ttVD + 2u(U)tVDt, VX), VX E Ho. 

With x = Dtt - gtt this gives 

11Ott111,2 <-: C II9ttII1,2 + (IlUttll + IlUtll IIUtII0ooo)II(DIIl,co + IIUtII0,0OII0tI1,2) 

< C(1 + IlUttIl). 

Together, these estimates show that 

IIl(u(U)(DV7?)ttII < C(1 + IlUttll) 

If we substitute this into (4.21), multiply by t2 and integrate, then we get 

t2IIUtt(t)112 + j s211VUttII2 ds < C(1 + J sIlUttll2ds) < C, 

in view of (4.20), and the proof of the a priori bounds is complete. 

Step 4. Finally, in order to prove uniqueness, we let uI, X1 and U2, 02 be 
two solutions of (1.1)-(1.2). By means of the a priori bounds 110iI1i,oC < C, 
i = 1, 2, it is straightforward to show that 110, - '2111,2 < Cllui - u211, and 

ItIui - U2112 < Cso - U2112, SO that uniqueness follows. O 
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